Scientific Practices in Introductory Physics Labs

Steven F. Wolf, Mark W. Sprague, Joi P. Walker

East Carolina University Departments of Physics and Chemistry STEM CoRE

November 16, 2019

Assessing Science Practices

Why Transform Labs?

Need Science Practices

"[Typical courses in t]he sciences ... are **not** made the means of cultivating the *observing powers*, stimulating *inquiry*, exercising the judgment in *weighing evidence*, nor of forming independent habits of thought." [Emphasis mine]

Steven F. Wolf (wolfs150ecu.edu)

November 16, 2019 2 / 16

< □ > < □ > < □ > < □ > < □ > < □ >

Why Transform Labs?

Meaningful Science

"To support students' meaningful learning in science, [practices and content] need to be integrated into standards, curriculum, instruction, and **assessment**."

NRC framework for science education (2012) (emphasis mine)

NRC (2012)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Science Practice Focused Lab curriculum

Piloted Spring 2018

Piloted Fall 2018

- ∢ 🗗 ▶

M.J. Ford, Science Education 99, 1041 (2015).

Empirical practices:

- EP1 Locate information relevant to a scientific problem.
- EP2 Construct a relevant/appropriate scientific question for a given problem.
- EP3 Design an experiment to test a scientific question.
- EP4 Apply (or know when to apply) appropriate analytical methods to examine a scientific problem.
- EP5 Appraise an experimental design to identify elements and limitations and how they impact scientific findings/conclusions.
- EP6 Troubleshoot technical issues.
- EP7 Evaluate evidence and critique experimental designs.
- EP8 Interpret basic statistics (e.g., average and SD).

< □ > < □ > < □ > < □ > < □ > < □ >

What science practices?

M.J. Ford, Science Education 99, 1041 (2015).

Representative practices:

- RP1 Generate a hypothesis or make a prediction based on a scientific model.
- RP2 Construct an argument based on evidence.
- RP3 Identify additional information needed to support an argument.
- RP4 Provide alternative explanations for results that may have many causes.
- RP5 Integrate and apply knowledge across sub-disciplines.
- RP6 Represent data in a visual form.
- RP7 Interpret visual representations of data.
- RP8 Construct a Data table.
- RP9 Data Analysis.

A B A B
A B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Practical design – Physics I

Prompt

You notice that for a given rotation radius R, the stopper (mass m) travels faster as the hanging mass M increases. You want to determine the relationship between hanging mass (M) and period (T) for a given radius (R).

Students turn in a report that includes:

- An experimental procedure
- A data table
- Their claim
- A (transformed) plot of T vs. M
- An argument

Image: A matrix and a matrix

- This practical is to be given throughout the entire grant period.
- Crafted a detailed rubric.
- Exams are turned in online and sent through SafeAssign/TurnltIn.

Faculty were concerned that the exam would get out/students would cheat. That informed our initial analysis.

Preliminary Results: Across semesters

A ID > A A P > A

Preliminary Results: Across days (Fall 2018)

10 / 16

A D M A A A A M M

Preliminary Results: Across days (Spring 2019)

Preliminary Results: Across graders (Fall 2018)

Preliminary Results: Across graders (Spring 2019)

Conclusions/Future Directions

- We have developed a practical with face validity
- We are able to use it on multiple days and across semesters without issues with cheating
- We are working on calibrating graders
- We are working on establishing construct validity

XLABs Personnel

Biology

- Co-PI: Heather Vance-Chalcraft
- Co-PI: Kristine Callis-Duehl
- Taria Crenshaw

Chemistry

- Project Lead: Joi Walker
- Rosa Bell
- Feng Li
- Annalisa Smith-Joyner
- Kate Hosbein

Award # 1725655

Steven F. Wolf (wolfs15@ecu.edu)

Link to slides:

STEN

Collaborative FOR Research IN Education

http://bit.ly/ecuXLABs

Assessing Science Practices

November 16, 2019

15 / 16

Physics

- Co-PI: Steven Wolf
- Mark Sprague
- Robert Seip
- Heather Hundley

Thank You!

Any Questions?

wolfs150ecu.edu

э

16 / 16

Steven F. Wolf (wolfs15@ecu.edu)

Assessing Science Practices

November 16, 2019

< □ > < 同 > < 回 > < 回 > < 回 >